Q.P. Code: 19CE0151

2

3

5

117

Reg. No:	
----------	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations February-2022 **FLUID MECHANICS & HYDRAULIC MACHINERY**

		(Agricultural Engineering)		
Ti	me:	A hours Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)		
		UNIT-I		
1	a	Define surface tension. Derive the expression for surface tension on liquid Droplet.	L2	6M
	b	The surface tension of water in contact with air at 20^{0} C is 0.072 N/m. The pressure inside of water droplet of water is to be 0.02 N/cm ² greater than the outside Pressure. Calculate the diameter of the droplet of water.	L2	6 M
		OR		
2	a	Derive the expression for pressure difference in differential manometers with neatsketches.	L2	10M
	b	Explain the terms of compressibility and bulk modulus.	L2	2M
3	a	Define rate of flow and derive continuity equation for one dimensional flow.	L1	5M
	b	Derive force exerted by flowing fluid on a Pipe bend equation.	L3	7M
		OR		
4	a	Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is0.8 m in diameter and carries one third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the	L4	10M
	h	Explain different types of flow in detail	12	21
	U	UNIT-III	L	2111
5	A di	n orifice meter with orifice diameter 15 cm is inserted in a pipe of 30cm ameter. The pressure difference measured by mercury oil in differential	L4	12M
	m m cc	anometer on the two sides of the orifice meter gives a reading of 50 cm of ercury. Find the rate of flow of file of specific gravity 0.9 when the pefficient of discharge of the orifice meter is 0.64.		
,		OR		103-5
0	P	A norizontal pipeline 40 m long is connected to a water tank at one end	L3	12M

6 and discharges freely into the atmosphere at other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. the height of water level in the tank is 8 m above the centre of pipe. Considering all losses of head which occur, determine the rate of flow. Take f = 0.01 for both sections of the pipe

TINITT IN

N13

	UNII-IV		
7	a A jet of water of diameter 50 mm moving with a velocity of 40 m/s, strikes a curved fixed symmetrical plate at the centre. Find the force	L4	6M
	extracted by Jet of water in the direction of the jet, if the jet is deflected		
	through an angle of 120° at the outlet of the curved plate		
	b A 7.5 cm diameter jet having a velocity of 30 m/s strikes a flat plate, the	L4	6M
	normal of which is inclined at 45° to the axis of the jet. Find the		
	normal pressure on the plate when (1) the plate is stationary, and		
	(11) when the plate is moving with a velocity of 15 m/s and away		
	from the jet.		
	OR		
8	A jet of water moving at 12 m/s impinges on vane shaped to deflect the jet	L4	12M
	through 120° when stationary. If the vane is moving at 5 m/s, find the angle		
	of the jet so that there is no shock at inlet. What is the absolute velocity of the		
	jet at exit in magnitude and direction and the work done per second per unit		
	weight of water striking per second? Assume that the vane is smooth.		
	UNIT-V		
9	A Pelton wheel is to be designed for the following specifications:	L1	12M
	Shaft power = 11,772 kW, head = 380 m, speed =750 r.p.m, overall		
	efficiency = 86% . Jet diameter is not to exceed one-sixth of the wheel		
	diameter. Determine: (i) The wheel diameter, (ii) The number of		
	jetsrequired and (iii) Diameter of jet. Take $Kv1 = 0.985$ and $Ku1 =$		
	0.45.		
	OR		
10	a Derive the expression for specific speed.	L1	6M
	b What is priming process?	L1	6M

*** END ***